Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biosens Bioelectron ; 220: 114861, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2244685

ABSTRACT

We propose a label-free biosensor based on a porous silicon resonant microcavity and localized surface plasmon resonance. The biosensor detects SARS-CoV-2 antigen based on engineered trimeric angiotensin converting enzyme-2 binding protein, which is conserved across different variants. Robotic arms run the detection process including sample loading, incubation, sensor surface rinsing, and optical measurements using a portable spectrometer. Both the biosensor and the optical measurement system are readily scalable to accommodate testing a wide range of sample numbers. The limit of detection is 100 TCID50/ml. The detection time is 5 min, and the throughput of one single robotic site is up to 384 specimens in 30 min. The measurement interface requires little training, has standard operation, and therefore is suitable for widespread use in rapid and onsite COVID-19 screening or surveillance.


Subject(s)
Biosensing Techniques , COVID-19 , Optical Devices , Humans , COVID-19/diagnosis , SARS-CoV-2 , Surface Plasmon Resonance
2.
Biosensors (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082215

ABSTRACT

The recent COVID-19 pandemic has caused tremendous damage to the social economy and people's health. Some major issues fighting COVID-19 include early and accurate diagnosis and the shortage of ventilator machines for critical patients. In this manuscript, we describe a novel solution to deal with COVID-19: portable biosensing and wearable photoacoustic imaging for early and accurate diagnosis of infection and magnetic neuromodulation or minimally invasive electrical stimulation to replace traditional ventilation. The solution is a closed-loop system in that the three modules are integrated together and form a loop to cover all-phase strategies for fighting COVID-19. The proposed technique can guarantee ubiquitous and onsite detection, and an electrical hypoglossal stimulator can be more effective in helping severe patients and reducing complications caused by ventilators.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , SARS-CoV-2
3.
Encyclopedia of Sensors and Biosensors (First Edition) ; : 17-32, 2023.
Article in English | ScienceDirect | ID: covidwho-2060204

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging human-to-human infectious disease that broke out in early December 2019 and threatens global public health, causing widespread concern. This respiratory disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development of rapid and reliable techniques for COVID-19 diagnosis is a significant step to prevent further infections. Combinations of genome sequencing, nucleic acid molecular testing, clustered regularly interspaced short palindromic repeats editing technology, antigen/antibody detection, and computed tomography imaging have been implemented to identify and screen COVID-19 infections. Moreover, other new diagnosis methods such as dried blood spots and biosensors are being developed and are summarized here. This manuscript reviews currently available methods for SARS-CoV-2 detection with the aim of helping researchers develop timely and effective technologies to detect this emerging virus and its variants.

5.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715109

ABSTRACT

Cost-effective, rapid, and sensitive detection of SARS-CoV-2, in high-throughput, is crucial in controlling the COVID-19 epidemic. In this study, we proposed a vertical microcavity and localized surface plasmon resonance hybrid biosensor for SARS-CoV-2 detection in artificial saliva and assessed its efficacy. The proposed biosensor monitors the valley shifts in the reflectance spectrum, as induced by changes in the refractive index within the proximity of the sensor surface. A low-cost and fast method was developed to form nanoporous gold (NPG) with different surface morphologies on the vertical microcavity wafer, followed by immobilization with the SARS-CoV-2 antibody for capturing the virus. Modeling and simulation were conducted to optimize the microcavity structure and the NPG parameters. Simulation results revealed that NPG-deposited sensors performed better in resonance quality and in sensitivity compared to gold-deposited and pure microcavity sensors. The experiment confirmed the effect of NPG surface morphology on the biosensor sensitivity as demonstrated by simulation. Pre-clinical validation revealed that 40% porosity led to the highest sensitivity for SARS-CoV-2 pseudovirus at 319 copies/mL in artificial saliva. The proposed automatic biosensing system delivered the results of 100 samples within 30 min, demonstrating its potential for on-site coronavirus detection with sufficient sensitivity.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Gold/chemistry , Humans , SARS-CoV-2 , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL